Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422650

RESUMEN

BACKGROUND: Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE: In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN: First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS: The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS: KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION: These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Ratones , Animales , Depresión/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
2.
J Ethnopharmacol ; 325: 117619, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38272103

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate (CaOx) kidney stones are widely acknowledged as the most prevalent type of urinary stones, with high incidence and recurrence rates. Incarvillea diffusa Royle (ID) is a traditionally used medicinal herb in the Miao Minzu of Guizhou province, China, for treating urolithiasis. However, the active components and the underlying mechanism of its pharmacodynamic effects remain unclear. AIM OF THE STUDY: This study aimed to investigate the potential inhibitory effect of the active component of ID on the formation of CaOx nephrolithiasis and elucidate the underlying mechanism. MATERIALS AND METHODS: In vivo, a CaOx kidney stone model was induced in Sprague-Dawley (SD) rats using an ethylene glycol and ammonium chloride protocol for four weeks. Forty-eight male SD rats were randomly assigned to 6 groups (n = 8): blank group, model group, apocynin group, and low, medium, and high dose of ID's active component (IDW) groups. After three weeks of administration, rat urine, serum, and kidney tissues were collected. Renal tissue damage and crystallization, Ox, BUN, Ca2+, CRE, GSH, MDA, SOD contents, and levels of IL-1ß, IL-18, MCP-1, caspase-1, IL-6, and TNF-α in urine, serum, and kidney tissue were assessed using HE staining and relevant assay kits, respectively. Protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in kidney tissues was quantified via Western blot. The antioxidant capacities of major compounds were evaluated through DPPH, O2·-, and ·OH radical scavenging assays, along with their effects on intracellular ROS production in CaOx-induced HK-2 cells. RESULTS: We found that IDW could significantly reduce the levels of CRE, GSH, MDA, Ox, and BUN, and enhancing SOD activity. Moreover, it could inhibit the secretion of TNF-α, IL-1ß, IL-18, MCP-1, caspase-1, and decreased protein expression of Nrf2, HO-1, p38, p65, and Toll-4 in renal tissue. Three major compounds isolated from IDW exhibited promising antioxidant activities and inhibited intracellular ROS production in CaOx-induced HK-2 cells. CONCLUSIONS: IDW facilitated the excretion of supersaturated Ca2+ and decreased the production of Ox, BUN in SD rat urine, and mitigated renal tissue damage by regulating Nrf2/HO-1 signaling pathway. Importantly, the three major compounds identified as active components of IDW contributed to the inhibition of CaOx nephrolithiasis formation. Overall, IDW holds significant potential for treating CaOx nephrolithiasis.


Asunto(s)
Oxalato de Calcio , Nefrolitiasis , Ratas , Masculino , Animales , Oxalato de Calcio/orina , Especies Reactivas de Oxígeno/metabolismo , Interleucina-18/efectos adversos , Interleucina-18/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/efectos adversos , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Nefrolitiasis/inducido químicamente , Nefrolitiasis/tratamiento farmacológico , Riñón/metabolismo , Superóxido Dismutasa/metabolismo , Caspasas/metabolismo
3.
J Ethnopharmacol ; 301: 115832, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36283636

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (GE) is a Chinese medicinal herb commonly used to treat central nervous system-related diseases, including headaches, dizziness, epilepsy, numbness of the limbs and depression. AIM OF THE STUDY: Microbial-based fermentation has been successfully used to increase the extract efficiency of medicinal herbs in recent years. However, no study has hitherto explored the anti-depressant-like effect of GE processed by microorganisms. Herein, this subject aimed to clarify the anti-depressant-like effect of fermented Gastrodia elata Bl. (FGE) and its active chemical constituents. MATERIALS AND METHODS: The chronic unpredictable mild stress (CUMS) model, a well-established animal model of depression, was induced in Kunming (KM) mice. The mice were administrated with FGE for 3 weeks. The sucrose preference test (SPT), open field test (OFT) and tail suspension test (TST) were conducted. Moreover, the levels of serotonin (5-HT) and dopamine (DA) in brain tissue homogenates, the concentration of Ca2+ and the activity of MAO in serum, H&E and Nissl staining in the hippocampus, and the hippocampus protein expressions of BDNF, NMDAR1, NMDAR2A and NMDAR2B relevant to depression were detected. Furthermore, chemical constituents of FGE were further isolated, and the protective activity of the obtained compounds against NMDA-induced PC-12 cell damage was assessed. RESULTS: FGE could alleviate the depression state in CUMS-induced mice and reduce apoptosis of neuronal cells in the hippocampus. Furthermore, FGE could improve the contents of 5-HT, DA and decrease the concentration of Ca2+ and MAO activity in brain tissue and serum compared with the control group. It could reverse the decreased expression of BDNF, NMDAR2A and NMDAR2B and increase NMDAR1 protein expression. Investigation of the active constituents from FGE yielded two new compounds, (4-(((4-ethoxybenzyl) oxy)methyl)-phenol 1 and 3-((4-hydroxy benzyl)oxy)propane-1,2-diol) 2, with twelve known compounds (3-14). The compounds (3-((4-hydroxybenzyl)oxy)propane-1,2-diol 2, 4, 4'-dihydroxyd iphenyl methane 3, and bungein A 4) protected against NMDA-induced PC-12 cells damage. CONCLUSION: This study demonstrated that FGE could improve the depressive behavior of CUMS-induced mice and exert a protective effect on nerve cells in the brain. Importantly, compounds 2-4 are the active components of FGE. Overall, the above findings suggest that FGE has huge prospects for application in treating depression-related diseases.


Asunto(s)
Gastrodia , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Gastrodia/química , Monoaminooxidasa/metabolismo , N-Metilaspartato , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Propano/farmacología , Serotonina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-35497912

RESUMEN

The deficiency of traditional calcium preparation will gradually be replaced by the new type of calcium preparation. Rosa roxburghii fruit (R. roxburghii) is popular for its rich nutrients and functional ingredients. The fermentation broth of R. roxburghii, involving amino acids, flavonoids, triterpenes, polysaccharides, and other compounds, is favorable for calcium chelation. Thus, this study fabricated calcium-incorporated R. roxburghii (FECa) and further illustrated its efficacy on bone mineral density (BMD) in rats. The calcium holding capacity of FECa was identified and confirmed using AAS. Ion complexation of FECa was characterized using 1H-NMR, UV, SEM and EDS, and FTIR. The calcium contents of femurs were increased by 36%, and the bone trabeculae of femurs were significantly increased. Net calcium balance was enhanced to further improve BMD by oral administration of FECa. The above results indicate that FECa can be a potential and efficient calcium supplementation agent.

5.
Bioorg Chem ; 95: 103508, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31927315

RESUMEN

Diosgenone [(20S,22R,25R)-spirost-4-en-3-one, C27H40O3] has been considered as a potential therapeutic alternative remedy for malaria. An efficient and economical approach of microbial transformation with diosgenin to diosgenone by the yeast strain Wickerhamomyces anomalus JQ-1 from Naxi traditional Jiu Qu was developed in this study. Chromatographic analysis confirmed that 85% of 0.1 mM diosgenin was transformed to diosgenone within 72 h. This research demonstrates that diosgenin could be converted to diosgenone through two-step pathway including 3ß-hydroxyl oxidation and double bond isomerization rather than through one-step pathway, which prompted a further inference that the oxidation activity in W. anomalus JQ-1 has the same function with the Oppenauer-type oxidation which can convert diosgenin into diosgenone. Gaining specific functional strains from traditional fermented products will be a potential direction and ethnobotanical researches could provide helps with discovery and utilization of microbial resources.


Asunto(s)
Diosgenina/metabolismo , Saccharomycetales/química , Compuestos de Espiro/metabolismo , Triterpenos/metabolismo , China , Diosgenina/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Saccharomycetales/aislamiento & purificación , Saccharomycetales/metabolismo , Compuestos de Espiro/química , Relación Estructura-Actividad , Triterpenos/química
6.
J Ethnobiol Ethnomed ; 14(1): 74, 2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30486880

RESUMEN

BACKGROUND: Bai people in the Dali Prefecture of Northwest Yunnan, China, have a long history of using plant extracts to dye their traditional costumes and maintain this culture for posterity. However, the development of modern technology, while vastly improving the dyeing efficiency, is also replacing indigenous knowledge which threatens the indigenous practice, causing the latter disappearing gradually. This study sought to examine the indigenous knowledge of plants used for textile dyeing in Bai communities, so as to provide a foundation for their sustainable development. METHODS: We conducted a semi-structured interview among 344 informants (above age 36) selected through a snowball sampling method. Free lists and participant observation were used as supplementary methods for the interviews. Three quantitative indicators (informant consensus factor [ICF], use frequency, and cultural importance index [CI]) were used to evaluate the indigenous knowledge of the dye-yielding plants. RESULTS: Twenty-three species belonging to 19 plant taxonomic families were used for dye by Bai communities. We summarized them into four life forms, eight used parts, five colors, three processing methods, and four dyeing methods. Among them, Strobilanthes cusia (Nees) O. Kuntze was the most traditional dyeing plant and has an important cultural value. Location, age, and gender were found to have a significant effect on indigenous knowledge, and the dyeing knowledge was dynamic and influenced by social factors. CONCLUSIONS: Diverse plant resources and rich indigenous knowledge of textile dyeing persist at settlements of Bai communities in Dali Prefecture. However, high labor costs and thinning market of traditional products that use plant dye cause repulsion toward traditional practice. To that, a good income in other profession attracts indigenous people to shift from their tradition of making plant-based dye and associated cultural systems at risk of extinction. More research for market development for products that use plant-based dye is necessary for the conservation of this valuable knowledge and biodiversity protection in Bai communities.


Asunto(s)
Colorantes , Conocimiento , Plantas , Textiles , Adulto , Anciano , Anciano de 80 o más Años , Biodiversidad , China/etnología , Etnobotánica , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA